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Abstract 

This paper presents a Wiener-Hopf equations technique to suggest and analyze 
an iterative algorithm for solving the strongly nonlinear general nonconvex 
variational inequality. We establish the equivalence between the strongly 
nonlinear general nonconvex variational inequalities and the general nonconvex 
Wiener-Hopf equations. We also prove the convergence of the suggested 
algorithm under suitable conditions. Some special cases are also discussed. 

1. Introduction 

This work was inspired by the variational inequalities theory 
introduced by Stampacchia [16], this theory provides simple and unified 
framework to study a wide class of problems arising in pure and applied 
sciences. The existence and iterative schemes of variational inequalities 
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have been investigated over convex sets, and that is due to the fact that 
all techniques are mainly based on the properties of the projection 
operator over convex sets. Recently, a new class of nonconvex sets, called 
uniformly prox-regular sets, has been introduced and studied in [5]. In 
[4], Bounkhel et al. introduced a new class of variational inequalities 
called the nonconvex variational inequalities. Noor [10], Moudafi [9], and 
Pang et al. [13] have also considered the variational inequality problems 
over these nonconvex sets. In [10-12], Noor has shown that the projection 
technique can be extended to nonconvex variational inequalities and has 
established the equivalence between the nonconvex variational 
inequalities and fixed point problems by using the projection technique. 
This equivalent alternative formulation has been used to investigate the 
existence of a solution of the nonconvex variational inequalities on one 
hand and to introduce some iterative methods on the other hand. 

In this paper, a new class of nonconvex variational inequalities 
involving three nonlinear operators, is introduced and it is called the 
strongly nonlinear general nonconvex variational inequality. Also, a new 
Wiener-Hopf equations technique was applied to solve this new class of 
variational inequalities. 

For more information about applications, numerical methods and 
other aspects of variational inequalities, one may refer to [1-16]. 

2. Preliminaries 

Let H be a real Hilbert space, whose inner product and norm are 
denoted by ..,  and ,.  respectively. Let K be a nonempty closed subset 

in H. One recall the following well-known concepts from nonlinear convex 
analysis and nonsmooth analysis [5, 6, 14]. 

Definition 2.1. The proximal normal cone of K at Hu ∈  is given by 

( ) { [ ]},s.t.0:: αξ+∈>α∃∈ξ= uPuHuN K
P
K  
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where 

[ ] { ( ) }.: ∗∗ −=∈= uuudKuuP KK  

Here ( ).Kd  is the usual distance function to the subset K, that is, 

( ) .inf uvud
KvK −=

∈
 

The proximal normal cone ( )uN P
K  has the following characterization. 

Lemma 2.1. Let K be a nonempty, closed subset in H. Then ( ),uN P
K∈ξ  

if and only if there exists a constant 0>α  such that 

.,, 2 Kvuvuv ∈∀−α≤−ξ  

Definition 2.2. ([6]). The Clarke normal cone, denoted by ( ),uN C
K  is 

defined as 

( ) [ ( )],uNcouN P
K

C
K =  

where [ ]Sco  denotes the closure of the convex hull of S. One always has 

( ) ( ).uNuN C
K

P
K ⊂  The converse is not true in general. Note that ( )uN C

K  

is always a closed and convex cone and that ( )uN P
K  is always a convex 

cone, but may be nonclosed (see [5, 6]). Furthermore, if K is convex then 
all the existing normal cones and the normal cone in the sense of convex 
analysis ( )uN K  given by 

( ) { },allfor,,:: KvuuvHvuN K ∈−∈= ∗  

are coincided. A new class of nonconvex sets, called uniformly r-prox-
regular sets has been introduced and studied in [5]. It has been 
successfully used in many nonconvex applications such as optimization, 
economic models, dynamical systems, and differential inclusions. This 
class seems particularly well suited to overcome the difficulties, which 
arise due to the nonconvexity assumption on K, see [4]. 
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Definition 2.3. ([5]). For a given ( ],,0 ∞∈r  a subset K is said to be 

uniformly r-prox-regular, if and only if every nonzero proximal normal to 

K can be realized by an r-ball, that is, Ku ∈∀  and ( ),0 uN P
K∈ξ≠  one 

has 

( ) .,21, 2 Kvuvruv ∈∀−≤−ξξ  

Recall that for ,+∞=r  the uniform r-prox-regularity of K is 

equivalent to the convexity of K. The following lemma summarizes some 
important consequences of the uniform-prox-regularity needed in the 
sequel. 

Lemma 2.2. Let K be a nonempty closed subset of ( ]∞∈ ,0, rH  and 

set ( ){ }.,: rKudHuKr <∈=  If K is uniformly r-prox-regular, then the 

following holds: 

(i) ( ) ;, ∅≠∈∀ uPKu Kr  

(ii) ( ),,0 rr ∈′∀  the operator KP  is Lipschitz continuous with constant 

rr
r

′−
 on .rK ′  

For given nonlinear operators ,,, gAT  we consider the problem of 

finding ( ) KugHu ∈∈ :  such that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,,, 2 ugvguAugvgugvgTu −≥−λ+−  

( ) ,: KvgHv ∈∈∀   (1) 

Inequality of type (1) is called the strongly nonlinear general nonconvex 
variational inequality SNGNVI, and λ  is a positive parameter. If ,Ig =  

the identity operator, then (1) is equivalent to finding Ku ∈  such that 

( ) ,,,, 2 KvuvuAuvuvTu ∈∀−≥−λ+−   (2) 
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which is known as the strongly nonlinear nonconvex variational 
inequality, and was introduced and studied by Noor [11]. If ( ) ,0≡uA  

then problem (1) is equivalent to finding Ku ∈  such that 

( ) ( ) ( ) ( ) ( ) ,:,0, 2 KvgHvugvgugvgTu ∈∈∀≥−λ+−   (3) 

which is called the general nonconvex variational inequality. If ,Ig ≡  
the identity operator, and ,0=λ  then problem (3) is equivalent to 
finding Ku ∈  such that 

,,0, KvuvTu ∈∀≥−   (4) 

Problem (4) is the variational inequality introduced and studied by Stam- 

pacchia [16]. 

If K is a nonconvex (uniformly r-prox-regular) set, then problem (1) is 
equivalent to finding Ku ∈  such that 

( ) ( )( ),0 ugNuATu P
K+−∈   (5) 

where ( )( )ugN P
K  denotes the normal cone of K at ( )ug  in the sense of 

nonconvex analysis. Problem (5) is called the nonconvex variational 
inclusion problem associated with the nonconvex variational inequality 
(1). This implies that the variational inequality (1) is equivalent to 
finding a zero of the sum of two monotone operators (5). 

3. Iterative Algorithm 

In this section, we establish the equivalence between the nonconvex 
variational inequality SNGNVI (1) and the fixed point problem by using 
the projection operator technique used in Noor [10-12]. 

Lemma 3.1. Ku ∈  is a solution of the strongly nonlinear nonconvex 
variational inequality (1), if and only if Ku ∈  satisfies the relation 

( ) ( ) ( )[ ],uATuugPug K ρ+ρ−=   (6) 

where KP  is the projection of H onto the uniformly r-prox-regular set K. 
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Proof. Let Ku ∈  be a solution of (1). Then, for a constant ,0>ρ  

( ) ( )( ) ( ) ( )( )( )uATuugugNug P
K −ρ−−ρ+∈0  

( ) ( ) ( )( )( )uATuuugNI P
K −ρ−−ρ+=  

⇔  

( ) ( ) ( ) ( )[ ]uATuugNIug P
K ρ+ρ−ρ+= −1  

( ) ( )[ ],uATuugPK ρ+ρ−=  

where we have used the well-known fact that ( ) .1−+≡ P
KK NIP   

Lemma 3.1 implies that the strongly nonlinear general nonconvex 
variational inequality (1) is equivalent to the fixed point problem (6). 
This alternative equivalent formulation is very useful from the numerical 
and theoretical point of views. The fixed point problem (6) is used to 
suggest the following iterative method for solving the SNGNVI (1). 

We now consider the problem of solving the nonconvex Wiener-Hopf 
equations. To be more precise, let KP  be the projection of H onto the 

nonconvex set K and ,KK PIQ −=  where I is the identity operator. For 

given nonlinear operators ,,, gAT  consider the problem of finding 

Hz ∈  such that 

( ),111 zPgAzQzPTg KKK
−−− =ρ+   (7) 

where we have used the fact that 1−g  exists. Equation (7) is called the 

strongly nonlinear nonconvex Wiener-Hopf equation. For some special 
value of the operators ,,, gAT  one can obtain the original Wiener-Hopf 

equations, considered by Shi [15]. 

Now, we use Lemma 3.1 to establish the equivalence between 
problems (1) and (7) and this is the main motivation of our next result. 
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Lemma 3.2. The nonconvex Wiener-Hopf equation (7) has a solution 
,Hz ∈  if and only if the strongly nonlinear nonconvex variational 

inequality (1) has solution ,Ku ∈  provided 

,1 zPgu K
−=  

( ) ( )( ),uATuugz −ρ−=   (8) 

where KP  is the projection of H onto the closed nonconvex set K. 

Proof. Let Ku ∈  be a solution of (1). Then, from Lemma 3.1, one 
obtains 

( ) ( )( )[ ].1 uATuugPgu K −ρ−= −  

Let 

( ) ( )( ),uATuugz −ρ−=  

then 

.1 zPgu K
−=  

Then, from (8), one has 

( ),11 zPgAzPTgzPz KKK
−− ρ+ρ−=  

that is, 

( ).111 zPgAzPTgzQ KKK
−−− =+ρ  

This shows that Hz ∈  is a solution of (7) and the converse is also true.  

Algorithm 3.1. For a given ,0 Kz ∈  find the approximate solution 

1+nz  by the iterative scheme 

( ) ,,2,1,0, K== nzPug nKn   (9) 

( ) [ ( ) ( )] ,,2,1,0,11 K=ρ+ρ−α+α−=+ nuATuugzz nnnnnnn  (10) 

where 10 ≤α≤ n  for all .0≥n  
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4. Convergence 

In this section, we will prove the convergence of the Algorithm 3.1, 
for this purpose, we need the following: 

Definition 4.1. An operator HHT →:  is said to be 

(i) strongly monotone, if and only if there exists a constant 0>α  
such that 

;,,, 2 HvuvuvuTvTu ∈∀−α≥−−  

(ii) Lipschitz continuous, if and only if there exists a constant 0>β  

such that 

.,, HvuvuTvTu ∈∀−β≤−  

Theorem 4.1. Let KP  be the Lipschitz continuous operator with 

constant .rr
r

′−
=δ  Let gT ,  be strongly monotone with constant ,0>α  

,0>η  respectively, and Lipschitz continuous with constant ,0,0 >σ>β  

respectively. Let the operator A be Lipschitz continuous with constant 
.0>γ  If there exists a constant ρ  such that 

( )( )( )
( )22

11
γ−βδ

δ+−γ−αδ
−ρ

k  

( )( )( ) ( ) ( ( )( ) )
( )

,1111
22

22222

γ−βδ

δ+−−δγ−β−δ+−γ−αδ
<

kk  (11) 

( )( )kkk δ+−γ>δασ+η−=<>δρα 11,21,1,1 2  

( ) ( ( )( ) ),11 2222 kδ+−−δγ−β+  

and [ ] ,;0,1,0
0

∞=α≥∀∈α ∑
∞

=
n

n
n n  then the approximate solution nz  

obtained from Algorithm 3.1 converges to a solution Hz ∈  satisfying the 
nonconvex Wiener-Hopf equation (7). 
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Proof. Let Hz ∈  be a solution of (7). Then, using Lemma 3.2, we get 

( ) ( ) ( )( ){ },1 uATuugzz nn −ρ−α+α−=   (12) 

where .10 ≤α≤ n  

From (10) and (12), one has 

( ) ( ( ) ( ))uguguuzzzz nnnnnn −−−α+−α−≤−+ 11  

( ) ( ) ( ) .uAuATuTuuu nnnnn −ρα+−ρ−−α+   (13) 

Since the operator T is strongly monotone with constant 0>α  and 
Lipschitz continuous with constant ,0>β  it follows that 

( ) 2222 ,2 TuTuTuTuuuuuTuTuuu nnnnnn −ρ+−−ρ−−≤−ρ−−  

( ) .21 222 uun −βρ+ρα−≤  (14) 

Similarly, since the operator g is strongly monotone with constant 0>η  

and Lipschitz continuous with constant ,0>σ  it follows that 

( ( ) ( )) ( ) ( ) ( ) ( ) 222 ,2 uguguguguuuuuguguu nnnnnn −+−−−−≤−−−  

( ) .21 22 uun −σ+η−≤  (15) 

From (13), (14), (15), and using the Lipschitz continuity of the 
operator A with constant ,0>γ  we get 

( ) zzzz nnn −α−≤−+ 11  

,2121 222 uunn −




 ργ+βρ+ρα−+σ+η−α+   (16) 

from (9) and the Lipschitz continuity of the projection operator KP  with 

constant ,δ  we have 

( ( ) ( )) ( )zPzPuguguuuu KnKnnn −+−−−=−  

,21 2 zzuu nn −δ+−σ+η−≤  
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( ) ,1 zzkuu nn −
−
δ≤−  

where ,21 2σ+η−=k  and we can rewrite (16) as 

( ) zzzz nnn −α−≤−+ 11  

( ) zzkk n
n −





 ργ+βρ+ρα−+

−
δα

+ 22211  

( ) ,1 zzzz nnnn −θα+−α−≤  

where 

( ) .211
22 





 ργ+βρ+ρα−+

−
δ=θ kk   (17) 

From (11), we see that 1<θ  and consequently, 

[( ( )) ] zzzz nnn −αθ−−≤−+ 111  

[( ( )) ] .11 0
0

zzi

n

i
−αθ−−≤ ∏

=

 

Since n
n

α∑
∞

=0
 diverges and ,01 >θ−  it follows that [( −∏

=∞→
1lim

0

n

in
 

( )) ] .01 =αθ− i  Consequently, the sequence { }nz  converges strongly to z 

in H satisfying the nonconvex Wiener-Hopf equation (7).  
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